"); //-->
王晓昭
江苏安科瑞电器制造有限公司
摘要:本文主要探讨了能耗管理系统(ECOMS)在LF12-3海上油田的应用。首先,介绍了该系统的应用背景;然后,详细阐述了该系统的设计原则、系统特点、构架及功能;总结了能耗管理系统对海洋石油平台在生产能耗动态监测和能源使用效率提升方面的重要作用。
关键词:海上油田;能耗管理系统;能耗动态监测;能源使用效率
一、引言
我国经济持续高速增长,随之而来的副作用也在不断显现,能源资源日趋紧张,环境条件不断恶化。要帮助高能耗企业实现清洁、高效的生产,需建设能耗监测、管理和控制系统,利用技术创新来提高能源的使用效率。
国外的统计数据显示,工业企业每年8%的能源损耗是由于缺乏能源监测和维护计划所导致的,而另外12%的能源损耗则是因为没有有效的能 源管理和控制系统。欧美发达的企业在生产过程中广泛采用了计算机监测和控制系统(如DCS和SCADA),并高度重视能源数据的在线监测、分析和优化系统。
借助现代计算机技术、网络通信技术和分布式控制技术,这些企业成功地建立了完善的能耗监测和管理体系。这使得能源消耗的动态过程实现了信息化、可视化和可控化,从而能够对企业生产过程中的能源消耗结构、过程和要素进行精细的管理、控制和优化。这种综合性的能源管理方法不仅有助于降低能源损耗,还能显著提高能源使用效率,为企业带来长期的经济效益和环保效益。
能耗管理系统在线监测整个企业的生产能耗动态过程,收集生产过程中大量分散的用电等能耗数据,提供实时及历史数据分析、对比功能,从而发现企业在生产能耗过程中存在问题;通过优化企业生产能耗的运行模式和轨迹以及建立企业能耗评估、能耗管理体系,提高企业能源效率水平。
二、项目概述
LF12-3油田群开发项目位于中国南海,包括一艘生产、储存一体的多功能油轮(FPSO) ,一座生产平台LF12-3WHP,之间采用海缆连接。FPSO配备4台原油主机,作为电站平台。
为满足长期发展需求,新建平台配有电源能量管理系统(PMS),以及能耗管理系统(ECOMS)。发电机组的调速与跳崖特性的不同,使得在并网运行时难以确保电网的稳定运行。若直接将两者并网,可能会导致电网参数波动,进而影响到电网的稳定性和可靠性。为确保电网的安全稳定运行,对这两种发电机组的调速与调压特性进行深入分析和控制以实现协同工作。通过电站电源能量管理系统和能耗管理系统,对整个平台电网设备的电力进行统一、科学、高效的管理和调度。
三、能耗管理系统应用与分析
3.1系统设计原则
从在构建这一系统时,充分融合了当前前沿且成熟的技术,同时着眼于未来的长远发展需求。通过统一规划、布局和设计,确保了系统的规范性和标准性,同时突出重点,分步实施,确保每一步都稳健而高效。在实施策略上,根据实际需求及预算进行统一领导、统筹规划,以标准化为核心,优先推进核心业务,确保信息的共享与安全。始终注重系统的完整性和投资的有效性,力求构建一个既又实用的能源监测管理平台,为重点用能单位提供强大的支持。
3.1.1标准化、规范化原则
在规划和实施本项目时,严格遵循电子政务相关的法律法规和技术规范,确保项目的整体建设和实施在业务、技术、运行管理等多个方面都得到精心设计。特别注重标准化和规范化,以确保项目的高效、安全和可持续发展。通过这种综合、全面的方法,力求构建一个既符合标准,又能够满足实际业务需求的电子政务系统。
3.1.2开放性、可扩展性原则
在设计本系统时,充分考虑了系统的开放性、可扩展性,以便大限度地利用现有设备、软件及信息资源。这种设计策略不仅提高了系统的兼容性和灵活性,还有助于降低维护成本和提高效率。
同时,我们也着眼于系统的未来发展。通过预留接口和二次开发API,为系统增添了新的功能,为用户提供了便利。这种前瞻性设计确保了系统能够随着形势的发展而不断扩展,与时俱进。
值得一提的是,系统完全符合电子政务相关技术标准,这保证了系统的合规性和稳定性 。我们相信,通过这种综合设计,我们的系统不仅能够满足当前的需求,还能够为未来的发展奠定坚实的基础。
3.1.3技术的成熟性原则
在构建此系统的过程中,注重设计理念、技术体系以及产品选择的与成熟性的有机结合。我们的目标是确保系统在其生命周期内保持持续的可维护性和可扩展性。采纳前沿的设计理念和技术体系,同时结合经过市场验证的成熟产品,力求打造一个稳定、既满足当前需求又能适应未来发展的系统。这样的设计思路旨在确保系统能够在长时间内保持高效运行,减少因技术落后或产品过时而引发的维护问题,从而为用户带来持久且稳定的效益。
3.1.4可靠性原则
系统综合考虑了系统结构、技术措施、安装校验及设备选型,确保系统整体运行的可靠性和安全性。
四、安科瑞企业能源管控系统概述
安科瑞企业能源管控系统采用自动化、信息化技术和集中管理模式,对企业的生产、输配和消耗环节实行集中扁平化的动态监控和数据化管理,监测企业电、水、燃气、蒸汽及压缩空气等各类能源的消耗情况,通过数据分析、挖掘和趋势分析,帮助企业针对各种能源需求及用能情况、能源质量、产品能源单耗、各工序能耗、工艺、车间、产线、班组、重大能耗设备等的能源利用情况等进行能耗统计、同环比分析、能源成本分析、碳排分析,为企业加强能源管理,提高能源利用效率、挖掘节能潜力、节能评估提供基础数据和支持。
五、应用场所
钢铁、石化、冶金、有色金属、采矿、医药、水泥、煤炭、造纸、化工、物流、食品、水厂、电厂、供热站、轨道交通、航空工业、木材、工业园区、医院、学校、酒店、写字楼以及汽车制造、机电设备、电器产品、工器具制造等离散制造业。
六、系统结构
现场通过厂区局域网和平台通讯,平台搭建在客户自己配置的服务器上。搭建完成之后,客户可以在任意能与局域网联通的地方,通过有权限的账号登陆网页以及手机APP查看各处的运行情况。
系统可分为三层:即现场设备层、网络通讯层和平台管理层。
现场设备层:主要是连接于网络中用于水、电、气等参量采集测量的各类型的仪表等,也是构建该配电、耗水、耗气系统必要的基本组成元素。肩负着采集数据的重任,这些设备可为本公司各系列带通讯网络电力仪表、温湿度控制器、开关量监测模块以及合格供应商的水表、气表、冷热量表等。
网络通讯层:包含现场智能网关、网络交换机等设备。智能网关主动采集现场设备层设备的数据,并可进行规约转换,数据存储,并通过网络把数据上传至搭建好的数据库服务器,智能网关可在网络故障时将数据存储在本地,待网络恢复时从中断的位置继续上传数据,保证服务器端数据不丢失。
平台管理层:包含应用服务器、WEB服务器和数据服务器,一般应用服务器和WEB服务器可以合一配置。
平台采用分层分布式结构进行设计,详细拓扑结构如下:
七、系统功能
平台采用自动化、信息化技术和集中管理模式,对企业的生产、输配和消耗环节实行集中扁平化的动态监控和数据化管理。实时监测企业各类能源的消耗情况,通过数据分析、挖掘和趋势分析,帮助企业加强能源管理,提高能源利用效率和节能潜力,为节能改造提供数据依据。
7.1平台登录
在浏览器打开云平台链接、输入账户名和权限密码,进行登录,防止未授权人员浏览有关信息。
7.2大屏展示
用户登录成功之后进入大屏展示页面,展示企业及各区域的能耗折标、产值、异常、排名、占比、通讯情况,点击区域展示该区域的分类能耗、产值等相关信息。
7.3首页
首页展示峰谷平用电、变压器情况、年能耗趋势、单耗趋势、分类能耗等企业级统计数据。
7.4数据监控
对企业各点位的能源使用、报警等情况进行实时的监控。以便企业用户能够实时的监测各个点位的运作情况,同时能更快的掌握点位的报警,并为企业削峰填谷、调整负载等技改措施提供数据支撑。
能源实时监控:对于水、电、气等能源消耗进行实时监测,确保用能环节的持续稳定运行,显示配电图、能流图、能源平衡网络图、能源计量网络图等功能。
能流图:需要在能流图上对水、电、气的消耗情况进行实时展示;当能源参数越限报警,可提供报警重要性等级分类,同时支持APP推送、手机****、邮件、钉钉、语音播报、系统弹窗报警提示等;
配电图:将配电房真实情况画入配电图,实时展示接入的门禁、水浸、电水气等仪表的实时参数、门禁水浸状态及能耗数据。
实时统计:实时统计工厂、车间、工序、设备的当年、季度、月、周、日、班次等能耗值;
数据展示:通过实时曲线和历史曲线展示不同区域、不同设备的不同的能耗参数;
检测:对能源报警信息进行集中显示,可以对报警阈值信息进行相关处理操作,可以对报警参数进行在线设置,当能源参数越限报警,可提供报警重要性等级分类,具备APP推送、手机****、邮件、钉钉、语音播报、系统弹窗等报警提示;
7.5视频监控
接入摄像头,实时掌控企业内实际情况。
7.6变压器监控
展示各电压器的负载情况,从而可以为变压器配备情况进行科学合理的规划。通过各种运行参数状态下用电效能的对比分析,找出更好的运行模式。根据运行模式调整负载,从而降低用电单耗,使电能损失降低。
7.7仪表实时监控
展示各个水电气仪表的实时参数变化,以曲线图的方式展示。
7.8能源中控
将所有有关能源的能源参数集中在一个看板中,能从多个维度对比分析,实现各个产业线的对比,帮助领导掌控整个工厂的能源消耗,能源成本,标煤排放等的情况。
7.9用能统计
从能源使用种类、监测区域、车间、生产工艺、工序、工段时间、设备、班组、分项等维度,采用曲线、饼图、直方图、累积图、数字表等方式对企业用能统计、同比、环比分析、实绩分析,折标对比、单位产品能耗、单位产值能耗统计,找出能源使用过程中的漏洞和不合理地方,从而调整能源分配策略,减少能源使用过程中的浪费。
7.10成本分析
统计各个监测节点(工厂、车间)的当年、季度、月、周、日各类能源消耗费用,其中电包括峰电量、峰电费、谷电量、谷电费以及平均电量和平均电费。
7.11产品单耗统计
与企业MES系统对接,通过产品产量以及系统采集的能耗数据,在产品单耗中生成产品单耗趋势图,并进行同比和环比分析。同时将产品单耗与行业/国际指标对标,以便企业能够根据产品单耗情况来调整生产工艺,从而降低能耗。
7.12绩效分析
对各类能源使用、消耗、转换,按班组、区域、车间,产线、工段、设备等进行日、周、月、年、指定时段绩效统计按照能源计划或定额制定的绩效指标进行KPI比较考核,帮助企业了解内部能效水平和节能潜力,评定能源消耗是否合理。
7.13运行监测
系统对区域、工段、设备能源消耗进行数据采集,监测设备及工艺运行状态,如温度、湿度、流量、压力、速度等,并支持变配电系统一次运行监视。可直接从动态监测平面图快速浏览到所管理的能耗数据,支持按能源种类、车间、工段、时间等维度查询相关能源用量。
7.14自定义能耗报表
用户可通过自定义报表头与列,灵活生产各种报表,查看企业各个节点的能耗,单耗,成本,综合能耗等信息,并同比、环比报表,支持导出报表。
7.15同比、环比
提供能耗成本的图形对比分析,包括分时段(日、月、年)的同比、环比分析,分类、分时段、分项(地点、机构、设备)统计图形对比分析(柱状图、饼图、堆积图等)。
同比
环比
7.16分析报告
以年、月、日对企业的能源利用情况、线路损耗情况、设备运行情况、运维情况等进行仔细的统计分析,让用户更加了解系统的运行情况,并为用户提供数据基础,方便用户发现设备异常,从而找出改善点,以及针对用能情况挖掘节能潜力。
7.17能耗设备用能
监控耗能设备运行、停机及异常状态,及时解决设备故障停运导致无法正常生产。
7.18线损分析
根据节点、能源分类,查询各个节点线路上的能源损耗数据,及时发现能量在使用过程中的跑冒滴漏和异常用能等浪费的问题,提醒用户及时进行干预。
7.19碳排放管理
按照区域对碳排放总量的变化趋势进行统计,并进行同环比分析。对单位产值碳排放量进行计算,并结合减排指标实现超标预警,提升区域减排水平,促进碳达峰目标实现。
7.20电能质量监测
实时监测谐波含量、三相不平衡度、功率因数等,确保功率因数不低于考核指标,避免被罚款和设备出现故障。
7.21运维管理
系统支持设备日常巡检计划、派工、消缺、报修、派工等设备运维管理,方便运行管理人员的制定巡检计划、派工,巡检人员执行巡检、完成工单、巡检发现问题消缺,进行故障报修、跟进维修进度,满足日常巡检、设备维修保养需要。
7.22报警管理
针对于电气正常开展、限电和能耗双控,实现电参量异常报警、电气火灾隐患报警、能耗超标报警、限电报警等,帮助企业提前预警,避免发生火灾事故和被罚款导致用能成本过高。支持分级分类报警,可对报警进行派发与闭环处理。
7.23能耗抄表
可自定义时间段抄仪表的抄表值以及差值,可自定义抄表的分类分项。
7.24能耗分析自定义时间抄表
可自定义时间段内各个拓扑节点的能耗值,可自定义抄表能耗值的的分类分项。
7.25容需量报表
提供容需量报表,实时展示容量需量价格的变化情况,帮助企业实现容改需,降低基本电费。
7.26复费率报表
对尖、峰、平、谷用电量及成本费用进行统计分析,为企业分时用电,优化成本效益提供数据支持。
7.27文档管理
对国标、能源管理制度、能源指标体系等文件进行归档,可快速查询相关文档。对仪表台账进行系统管理,支持文件的上传和下载。
7.28 3D可视化大屏
对场景进行虚拟仿真,展示各区域运行及能源消耗情况,可实现分层预览、转场展示、风格切换、智能巡检等效果,支持模型与监测点位的自定义绑定。
7.29 3D子系统
对各动力子系统进行虚拟仿真,展示子系统的动力管线、设备的实时状态及能源消耗情况,可实现动态的能源流向效果。
7.30工业组态
可通过图形化的编辑方式自定义组态图,展示设备运行状态及能源消耗情况,可上传自定义素材及绑定监测数据。
7.31自定义驾驶舱
可通过图形化的操作方式自定义驾驶舱,以折线图、饼图、表格等图形展示采集数据及各类统计数据,数据源包括API、数据库查询、MQTT、Excel等方式。
7.32基础数据管理
对系统的项目、探测器、设备型号、电参量、节点、能源、公示、及相关参数进行配置、修改、删除等管理、进行用户添加和授权管理、合同管理。
7.33手机APP
APP支持Android、iOS操作系统,方便用户按能源分类、区域、车间、工序、班组、设备等不同维度掌握企业能源消耗、产线比对、效率分析、同环比分析、能耗折标、事件记录、运行监视、异常报警、配电图、工艺流程图、能流图。
7.34知识产权证书
八、系统硬件配置
九、结论
综上所述,能耗管理系统是一种新型的能源管理工具,是LF12-3油田智能化数字油田建设的重要组成部分。通过对能耗数据进行采集、分析和对标,实现了对海上油田能耗的全面监控和优化管理。该系统在LF12-3油田的应用提高了能源利用效率,降低了运营成本,提高公司经济效益,并树立了节能降耗的形象,为能耗管理系统在海上油田大规模应用提供了参考。未来,随着信息化技术 的不断发展,海上油田能耗管理系统将会越来越完善,为海上油田的节能减排工作提供良好的支持工具。
参考文献
[1]张明东,王晓冬,王丽娟. 海上油田能耗数据采集与处理系统的研究与应用[J]. 海洋石油,2018,38(2) :99-104.
[2]孙宏斌,张伯明. 全局电力管理系统(GEMS)的新构想[J]. 电力自动化设备 ,2011, (5) :6-8.
[3]安科瑞企业微电网设计与选型手册.2022.05版.
[4]安科瑞企业能源管控平台.2023.06版.
作者介绍:(产品与技术咨询)
王晓昭,现任职于江苏安科瑞电器制造有限公司,主要从事企业能耗检测系统的研发与应用。Email:2881068609@qq.com;QQ:2881068609;手机18702112137;
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。